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Abstract—Some simple mathematical models of film condensation of pure non-metal vapours are discussed
and their correction according to the available experimental data is described.

NOMENCLATURE

diffusivity of condensate heat [m?/s];
Archimedean number, equation (3);

heat capacity coefficient of condensate
[I/keK];

friction coefficient of vapour on condensate
surface ;

Froude number, equation (6);

mass flow rate of condensate per unit width
of cooling surface (wall) [kg/ms];
relative fluid momentum to interphase,
equation (9);

thermal similarity number in type I phase
transition, equation (5);

total height of wall [m];

Nusselt number, equation (1);

physical Prandtl number, equation (4);
heat flux density on vapour-liquid in-
terface and on wall surface, respectively;
Reynolds number of condensate film, equa-
tion (2);

Reynolds number, equation (8);

latent heat of vaporization [J/kg];
saturation and cooling surface tempera-
ture, respectively [K];

= {U>t/{8>, dimensionless time (hydro-
dynamic homochromatic number);
vapour flow velocity along interphase [m];
longitudinal velocity component of con-
densate flow [m];

dynamic velocity on wall [m];

Weber number, equation (27);
coordinate directed streamwise along verti-
cal condensate flow [m];

x/{&>, dimensionless longitudinal
coordinate;

coordinate directed normally from wall to
interphase [m];

= Y/{d,>, dimensionless
coordinate.

transverse

Greek symbols

o,

=q,/(1" — T,), heat transfer coefficient
[Bym2K];
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Subscripts

condensate film thickness [m];

= 6/(d), relative perturbation in liquid
film thickness;

exponent of Pr, equation (18);

= V¥ Y/v, dimensionless distance from
wall (local Reynolds number);

the same asat Y = 4;

thermal conductivity coefficient of con-
densate [By/mK]

dynamic viscosity of condensate [HC/m?];
kinematic viscosity of condensate [m?/s];
condensate and vapour density, respec-
tively [kg/m?];

surface tension coefficient on vapour—
condensate interphase [H/m];

current and wall shear stress, respectively
[H/m?];

relative influence of condensate supercool-
ing, equation (13).

= (p’ — p")/p", relative difference in phase
densities;

number of geometrical similarity, equation

M

critical ;

laminar;

laminar wave;

turbulent;

turbulent wave;

wall;

external boundary of liquid film.

SIMILARITY CRITERIA

IN FILM condensation of pure non-metal sufficiently
dense gases the thermal resistance is practically con-
centrated in liquid phases. Hence, at all points of the
liquid-vapour interphase the temperature equals that
of saturation T”, and on the cooling surface either the
temperature T, or the heat flux density g, are

specified.

A mechanical interaction on the interphase is de-
termined by the relative motion of phases, the flow
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density of vapours condensing on this interphase, the
surface tension and the character of arising waves.

The respective similarity criteria can be written in
the following forms [1]:

the Nusselt number constructed according to the
gravitational-viscous linear scale as

o /[ v? \1/3
Nu* =—)- Q;) s (1)
- \gAp

the Reynolds number of the condensate as
Re = G/u, (2)

the Archimedes number, constructed according to the
capillary-gravitational linear scale, as

372
Ar, = = 12 man (3)
T 2gi (g — g3
the Prandtl number of the condensate as
v
Pr=2, @

a

the number of thermal similarity of type 1 physico-
chemical conversions as

r

K=——,
C(T" —T,)

(5)
The similarity number of the friction interaction with
the gravitational effect on the interphase (the general-
ized Froude number) as

: C‘,"p" VHZ
Lg(p' = p")’

the relation for the linear scales of the capillary—
gravitational interaction and of the cooling surface as

1,2
5=Ulvi—}. 7
’ [g(p’ -p" "

In the general case the effective coefficient of vapour
friction on the condensate surface Cf dependsupon the
vapour Reynolds number,

UL

Re" = , (8)
v

Fr (6)

and on the relative mass flow through the interphase,

- 95
= om? (9)
rpu
at
i'>Ch, CixJ (10)
Here C7, is the “dry” friction coefficient.

LAMINAR FLOW OF CONDENSATE WITH
UNPERTURBED (SMOOTH) INTERPHASE
This classical problem was formulated and mainly
solved by Nusselt [2].
For a vertical cooling surface and slowly moving
vapour, when the interface friction can be neglected,
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the respective formulas are of the form:

T,, = const. Nu* = 3Re)" '3, (K » 1, (11
u* = ' .
g, = const. ¢ > (K> 1))
Respectively,

(Nu*y = ARe 15, (12)

AtT, = const, 4 =092;atq, = const, A = 1.04 ~
1. Averaging was made from the upper edge of the
cooling surface where Re = 0, to the given Reynolds
number of the condensate film.

The effect of condensate supercooling is taken into
account via the introduction of the effective con-
densation heat:

re=r(l+ ¢K™1). (13)

In the Nusselt problem ¢ = 3/8. The geometry
slightly influences the numerical coefficient of this
theory. A solution for the moving vapour is tabulated
in terms of the similarity criteria:

a  Cu"*p"lay
a,’ ap'

where oy is the heat transfer coefficient at U” = 0.

(14)

TURBULENT CONDENSATE FLOW WITH
UNPERTURBED (SMOOTH) INTERPHASE

The problem of turbulent vapour condensation was
simultaneously formulated by Kirkbredt {3] on the
purely empirical basis and by Colborn [4] in terms of
the Reynolds analogy between heat transfer and
friction with the application of numerical coefficients
found for channel flows. Consideration of this problem
in terms of the classical semi-empirical turbulent
boundary Prandtl layer theory was first performed by
the author [5]. But, as with subsequent studies by
other researchers, proper attention was not given to
the qualitative difference in the problems of the heat
transfer in liquid film cooling without phase transi-
tions and of the film vapour condensation.

In the former case the heat flux is distributed so that
on the external film boundary it is equal to zero,
whereas on the cooling surface its value is maximum.
Thus the turbulent transfer conditions in a viscous
sublayer and its immediate vicinity are well defined.
Hence it is unnecessary to give here detailed transfer
conditions for the greater part of the flow on the side of
a free liquid boundary.

In the latter case the heat flux through a liquid film s
either practically constant (¢K ™! « 1) or changes
insignificantly. Therefore, the turbulent transfer mech-
anisms are essential at all points of the condensate
film. In this latter case the main integral equation is of

the form
Na d -1
Nu¥ =nl? f 711-) >
o L1+ ePriip

7

(15)

(NWFD = (15— Nger) ™" J " Nugdn,  (16)

Ner
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FiG. 1. Changes in the intermittence coefficient y over the

boundary layer thickness (3*—thickness of repulsion) in the

laminar—turbulent boundary layer transition (according to
the data by Tetyanko).
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FiG. 2. Changes in the intermittence coefficient y over the

boundary layer thickness (d-—calculated thickness of the
boundary layer).

The coefficient ¢ at large Re is equal to the inverse
value of the turbulent Prandtl number
Cuy
Pry = ——;
rr AT

Re>»Re, exPri'. (17)

In the region of the laminar—turbulent transition,
this coefficient can account for the effect of inter-
mittence, ie. alternate transition of laminar and
turbulent formations (units) through a given cross-
section of the film.

Values and character of the change in the inter-
mittence coefficient in the region of the developed
turbulent boundary layer of a noncompressible liquid
on the plate can be determined according to the data
from Figs. 1 and 2.

In the general case,

¢ = &(Re; y; Pr; Ar,), (18)

the main arguments are the Reynolds number and the
relative distance from the wall

For the classical Prandtl two-layer model typical for
the near-wall region of the turbulent boundary layer,
we have

0<y<1l6v/vk,

#r=0 du}. (19)

y>116v/eE, pr=016py2 —
dy

for a free vertical flow the wall dynamic velocity is
vy = (g0dp)' 2, 20
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and the shear stress distribution over the film thickness
is linear

(21)
The respective solution at Pr = const. is of the form

s+ Jn,~11.6)
\/’76‘\/('7,5“ 11.6)

=1, — §).

— -1
Nu* = 04 Prnf;/s(ln +4.65 Pr) .

(22)
Here Pr = & Pr and the film Reynolds number is:

Re ~ 1430+ 25Iny,) - 39. (23)

Data of the calculations according to the above
formulas are given in Table 1.

A fairly good agreement with experimental data was
obtained via the introduction of the deliberately
decreased critical value of the condensate film Rey-
nolds number Re,, = 100.

A much more detailed description for the hy-
drodynamics over the total thickness of the fully
developed turbulent boundary layer is provided by a
scheme wherein the turbulent viscosity is partly approx-
imated by the equations.

\
O0<n<68 gr=0;
68 <1 <68+ 0.2(7, — 6.8) = 5.44 + 02n,;
Ge =040 —68) [[1="L):
* s p

544 + 02, <n < ny

iy = 0.08(y — 6.8) \/(1 - 1).
Ha y

In this scheme the mixing length outside the viscous
sublayer is measured from its conventional boundary
n=6.8 correlating with the Prandtl-Karmann con-
stant &« = 0.4 [6] and the relationship 1 = y in (21).

Integrals (15) in these expressions for gr and Pr =~
const. are taken in quadratures. The latters are,
however, cumbersome and the direct numerical calcu-
lation is more simple.

(24)

Table 1. Local values of Nuf according to model (19)

— . Nup_ —_

15 Re Pr=1 Pr=175 Pr=3 Pr=S5
15 103 0175 0.189 0.198 0.204
30 307 0.186 0213 0.232 0.246
50 590 0.200 0238 0.266 0.284
60 757 0.206 0.249 0.280 0.300
100 1410 0230 0.280 0.321 0.350
200 3210 0.266 0.333 0.388 0.430
300 5140 0288 0.367 0430 0.482
1000 20200 0.381 0.500 0.610 0.690

4000 94,500  0.534 0.723 0.900 1.04

7000 176,000 0615 0.842 1.06 1.24

20,000 555,000  0.827 1.14 1.45 1.71
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Table 2. Local values of Nu
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¥ according to model (24)

Pr n,=130 50 60 100 200 300 1000 4000
1 0.160 0.157 0.158 0.164 0.181 0.195 0.255 0.359
2 0.198 0.209 0.215 0.236 0.275 0.303 0411 0.588
3 0.226 0.247 0.257 0.289 0.343 0.382 0.527 0.858
5 0.265 0.300 0.315 0.361 0.438 0.491 0.690 0.996
7 0.292 0.336 0.354 0410 0.501 0.565 0.801 1.155

10 0.320 0.372 0.393 0.459 0.566 0.640 0917 1.316

Re 236 504 652 1280 3020 4900 19,700 94,750

Table 3. Values of {Nu})> according to model (24)
L Lower
Pr n,=60 100 200 300 1000 4000 limit
1 0.157 0.160 0.168 0.176 0.213 0285 1, =350
2 0.212 0.223 0.245 0.262 0.332 0452
3 0.252 0.270 0.300 0.324 0416 0.572
5 0.307 0.332 0.377 0.410 0.532 0.735
7 0.344 0.374 0428 0.467 0.607 0.841
10 0.382 0418 0479 0.523 0.682 0.948
Re 652 1280 3020 4900 14,700 94,750

Table 2 represents the respective data for Pr
const.

As seen, the second model provides a weaker effect of
the film Reynolds number in the region of its low
values. By increasing the Reynolds number, calcu-
lations according to the both models correlate.

Table 3 represents mean values of the Nusselt
number in the range from the critical to the given
Reynolds number.

Figure 3 illustrates the {{Nu*); F;} dependences
plotted for five values of the Reynolds number of the
condensate film. As seen in the region of Pr ~ 1 this
dependence becomes rather weak.

Figure 4 illustrates the plotted dependences of the
local Nu* values calculated in the laminar and the
turbulent regions according to the Nusselt formula
and Table 2, respectively. Figure 5 respresents similar
plots for the Nusselt number averaged over the

turbulent flow region and over the total flow with
| ST T L
W @fg/
.8 / ‘
19700 4
6 / .
/ ] gz
D20
4 // P — 652
e
i ; i |
0 i | l || _
o 2 4 6 8 0 Pr

FiG. 3. Dependence of (Nu¥» upon Pr and Re according to
Table 3.

laminar and turbulent regions according to the simple
equation :

e — Re,
— T (25
Re (25)

Re,, R
R + (Nu¥>

(Nu*) = (Nut) "

It is seen that the effect of the laminar region of the
condensate flow practically degenerates at Re > 5000.

LAMINAR WAVE CONDENSATE FLOW

Real flows of liquid films are of the wave character.
The waves on their surface have different structures
and they exert different influence on the averaged flow
and the heat and mass transfer in laminar and
turbulent flows.

For a vertical wall a 2-dim. laminar wave liquid film
flow with a free boundary is described by the model
Kapitsa—Nakoryakov equation [6-8]

é i Re (0 a\/o 0
—— |+ —[=+169— | —=+071—)¢&
<a: * ax) 3 (at ax)(at * ax)
a8 oF 2 @ 0%
— —— —R - 5—, - | = 0 26
e T TS eax( az> 26)
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F1G. 4. Dependence of local values of Nu* upon Pr and Re.
Laminar region—Nusselt data; turbulent region—Table 2.
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FiG. 5. Dependence of {(Nu*) upon Pr and Re according to
(25). Laminar region-—Nusselt data, turbulent region—

Table 2.
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F1G. 6. Two-dimensional steady natural (a, b) and excited (c,
d) waves of the same frequency. (a, b)—Re = 7.6; (c, d)—
Re =227.
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Not going into the details of the well known
solutions of this equation, we will note only that it
leads to the existence of a so-called “residual layer”
whose thickness is slightly dependent upon the total
consumption of the vertical liquid flow. This fact was,
apparently, revealed by Brauer [9].

Profiles of the 2-dim. waves arising spontaneously
(natural) and specially excited [8] are illustrated in
Fig. 6. Figure 7 represents the pictures of real 3-dim.
waves arising on liquid surfaces in film vapour
condensation.

The thermal resistance of the condensate between
the waves is determined by the thickness of the
“residual layer” d,, i.e. in the laminar regime in these
flow regions the heat transfer intensity is of the order

We 27)

v2/3

SolgAp)?

This is the explanation for the Re region where the
heat transfer is quasi-self-similar in the film conden-
sation of a pure slowly moving vapour [10, 11].

According to the Brauer data for a vertical wall, the
laminar flow of a film with a smooth surface trans-
forms into the laminar wave at

Re,, ~ 2,3(Ar )'",

Nu* =~ = const. (28)

(29)
which in turn transforms into a turbulent wave at

Rer, =~ 35(Ar )'7>. (30)

Experiment

Fi1G. 7. Three-dimensional waves on a laminar vertical liquid
film.

Figure 8 shows experimental heat transfer data in
film condensation of water vapours on a vertical tube.
Similar data on freon vapour condensation on hori-
zontal tubes are represented in Fig. 9. It is distinctly seen
that derivations from the Nusselt theory are practically
observed over the total range of Reynolds number and
in the 0 < Re < 400 range the film condensation heat
transfer in the laminar wave regime can practically be
described by equation (12) with modified
coefficients.

The available experimental data in the above range
of Re are in the main described by the formula

(Nu*) =087 Re ', 31)

In the general case the proportionality factor and
the exponent of the Reynolds number of the conden-
sate film are the functions of the Ar*.

LAMINAR WAVE AND TURBULENT WAVE
CONDENSATE FLOWS

Figure 10 illustrates the waves arising in a turbulent
liquid film. They are irregular and, to a first approxi-
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F1G. 8. Experimental data on water vapour condensation on a
vertical tube. O—Kutateladze, Pr = 1.75, Re = 24-1260;
A—DMeisenburg et al, Pr = 1.7, Re = 115-1000; @—
Zozulya, Pr=1.75, Re=27-490; *—Butuzov, Pr=1.75, Re
= 110-435; &—Burov, Pr = 1.75, Re = 50-180; vV—
Ratiani, Pr = 1.75, Re = 2.5-44; Solid line—Nusselt

calculation.
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F1G. 9. Experimental data on freon vapour condensation on a
vertical tube. O—Kutateladze and Gogonin, Freon-21, Pr =
3.5, Re = 10-4250; A—Mazukevich, Freon-12, Pr x~ 3.5, Re
= 19-100; *—Welt, Freon-12, Pr ~ 3.5, Re = 6.8-65; @—
Zozulya, Freon-10, Pr = 4.55, Re = 150-650.
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mation, slightly influence the averaged turbulent flow
characteristics. They can exert a significant effect in the
presence of diffusional resistance on the interphase, e.g.
in condensation from vapour—gas mixtures. In conden-
sation of pure non-metal vapours, this resistance is,
however, negligible compared with the thermal re-
sistance of the condensate.

Figure 11 illustrates the calculated values (Nu*> in
the presence of the laminar wave regime with the heat
transfer law (31) in the upper flow region and of the
turbulent regime calculated according to the model
(24) in its lower region.

Figure 12 represents these dependences sectioned
according to the Reynolds numbers of the condensate
film. The critical value of the laminar—turbulent tran-
sition was taken equal to Re,, = 400. According to the
above data, it follows that slight variations of this value
do not exert a significant influence on {Nu*}.

At low Pr the heat transfer quasi-self-similarity is
distinctly observed in a rather large range of the
supercritical Re.

A comparison of the calculations from the plots in
Fig. 12 and experiments with water and Freon-21
vapour condensation (Pr = 1.0-1.7 and 3.5, re-
spectively) is given in Fig. 13. As seen, the data agree
well both qualitatively and quantitatively with calcu-
lations at Pr ~ 1 for water vapour and at Pr ~ 2.5 for
Freon-21,ie. at ¢ & 0.6-0.7. Therefore, it can be said
that the suggested model for the film condensation
heat transfer describes qualitatively well a real process
and the quantitative agreement is sufficiently readily

p——
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FiG. 10. Photographs of waves on a free vertical turbulent liquid film.
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F1G. 11. Dependence of (Nu*> according to (25). Laminar wave region according to (31), turbulent region
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F1G. 12. Sectioned dependence of Fig. 11 according to Reynolds numbers.

F1G. 13. Comparison of calculations according to the plots in Figs. 11, 12 with experiment for the
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condensation of water and Freon-21 vapours. ¢ ~ 0.6-0.7.
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FiG. 14. Diphenyl condensation, Pr ~ 5.2. 1—Calculation at ¢ = 1; 2—-calculation at ¢
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0.7.
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realized via the introduction of the ¢ coefficient, the
function (18) being sufficiently weak.

Unfortunately, the literature lacks good experimen-
tal data at high Pr of the condensate. A comparison of
the suggested calculation with rather obsolete experi-
ments on diphenyl condensation [ 13] carried out with
significant methodological defects is given in Fig. 14.
Nevertheless, a definite agreement between theory and
experiment is observed here as well.

The considered models are generalized for the
condensation of vapour moving parallel to the wall via
the introduction of the total V¥ value (i.e. with taking
into account the effect of the gravity force and vapour
friction on the interphase).
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THEORIE SEMI-EMPIRIQUE DE LA CONDENSATION EN FILM DE LA VAPEUR PURE

Résume—On considére les modéles les plus simples de la condensation en film de la vapeur non métallique
pure et leur correction resultant de I'analyse des resultats d’experience disponsibles.

HALBEMPIRISCHE THEORIE DER FILMKONDENSATION DES REINDAMPFES

Zusammenfassung—Es werden betrachtet die einfachsten mathematischen Modelle der Filmkondensation
des reinen Nichtmetalldampfes und ihre Korrektion, die aus der Analyse der vorhandenen
Versuchsergebnisse hervorgeht.

MOJIYAMIIMPUYECKAS TEOPUS MJIEHOUHON KOHAEHCALIMM UMCTOIO MAPA

AHHOTALMS — PaCCManHBalOTCﬂ l'Ip()CTCﬁl.L[PlC MAaTEeMAaTHYEeCKHE MOJETU MJICHOYHOH KOHACHCALMH
YHUCTOTO HEMETAJIJIMYCCKOrO MnMapa U UX KOPpEKTHUPOBKA, Cieayrollaa U3 aHaau3a HMCIOLIHXCS IKCNEpH-
MEHTAJIbHbIX JAHHbIX.



