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Abstract-Some simple mathematical models of film condensation of pure non-metal vapours are discussed 
and their correction according to the available experimental data is described. 
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NOMENCLATURE 

diffusivity of condensate heat [m*/s] ; 
Archimedean number, equation (3); 
heat capacity coefficient of condensate 

[J/kg Kl ; 
friction coefficient of vapour on condensate 
surface ; 
Froude number, equation (6); 
mass flow rate of condensate per unit width 
of cooling surface (wall) [kg/m s] ; 

relative fluid momentum to interphase, 
equation (9); 
thermal similarity number in type I phase 
transition, equation (5); 
total height of wall [m] ; 
Nusselt number, equation (1); 
physical Prandtl number, equation (4); 
heat flux density on vapourrliquid in- 
terface and on wall surface, respectively; 
Reynolds number of condensate film, equa- 
tion (2); 
Reynolds number, equation (8); 
latent heat of vaporization [J/kg] ; 
saturation and cooling surface tempera- 
ture, respectively [K] ; 
= (U)t/(~3), dimensionless time (hydro- 
dynamic homochromatic number); 
vapour flow velocity along interphase [m] ; 
longitudinal velocity component of con- 
densate flow [m] ; 
dynamic velocity on wall [m] ; 
Weber number, equation (27); 
coordinate directed streamwise along verti- 
cal condensate flow [m] ; 
x/(6), dimensionless longitudinal 
coordinate ; 
coordinate directed normally from wall to 
interphase [m] ; 
Z Y/(6,), dimensionless transverse. 
coordinate. 

Greek symbols 

a, = q,/(T” - T,), heat transfer coefficient 

CBr/m’ Kl ; 

condensate film thickness [m] ; 
= d/(6), relative perturbation in 
film thickness; 

liquid 

exponent of Pr, equation (18); 
= V’; Y/v, dimensionless distance from 
wall (local Reynolds number); 
thesameasat Y = 6; 
thermal conductivity coefficient of con- 
densate [BJmK] 
dynamic viscosity of condensate [HC/m’] ; 
kinematic viscosity of condensate [m’/s] ; 
condensate and vapour density, respec- 
tively [kg/m31 ; 
surface tension coefficient on vapour- 
condensate interphase [H/m] ; 
current and wall shear stress, respectively 

[H/m’] ; 
relative influence of condensate supercool- 
ing, equation (13). 

= (p’ - p”)/p”, relative difference in phase 
densities; 
number of geometrical similarity, equation 

(7); 

Subscripts 

cr, 
1, 
lw, 
T, 
TK 

; 

critical; 
laminar ; 
laminar wave ; 
turbulent ; 
turbulent wave; 
wall ; 
external boundary of liquid film. 

SlMlLARITY CRITERIA 

IN FILM condensation of pure non-metal sufficiently 
dense gases the thermal resistance is practically con- 
centrated in liquid phases. Hence, at all points of the 
liquid-vapour interphase the temperature equals that 
of saturation T”, and on the cooling surface either the 
temperature T, or the heat flux density qw are 
specified. 

A mechanical interaction on the interphase is de- 
termined by the relative motion of phases, the flow 
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density of vapours condensing on this interphase, the 
surface tension and the character of arising waves. 

The respective similarity criteria can be written in 
the following forms [l] : 

the Nusselt number constructed according to the 
gravitational-viscous linear scale as 

N&tl " 

6) 

l/3 

A Ap ’ 
(1) 

the Reynolds number of the condensate as 

Re = G/p, (2) 

the Archimedes number, constructed according to the 
capillary-gravitational linear scale, as 

(p 

At-, = p2g1i2(p! _ /)3i2' (3) 

the Prandtl number of the condensate as 

Pr = !! 
a’ 

(4) 

the number of thermal similarity of type 1 physico- 
chemical conversions as 

r 

K=C(T”-T,)’ (5) 

The similarity number of the friction interaction with 
the gravitational effect on the interphase (the general- 
ized Froude number) as 

Fr = c;p”v”2 

&W - P”) ’ 
(6) 

the relation for the linear scales of the capillary- 
gravitational interaction and of the cooling surface as 

r - 71 ,2 

In the general case the effective coefficient of vapour 
friction on the condensate surface C; depends upon the 
vapour Reynolds number, 

Re” = u”L, (8) 
V 

and on the relative mass flow through the interphase, 

at 

i_ > CfO, c; +, 

Here C;6 is the “dry” friction coefficient. 

(10) 

LAMINAR FLOW OF CONDENSATE WITH 
UNPERTURBED (SMOOTH) INTERPHASE 

This classical problem was formulated and mainly 
solved by Nusselt [2]. 

For a vertical cooling surface and slowly moving 
vapour, when the interface friction can be neglected, 

the respective formulas are of the form: 

T, = const. 

q, = const. 
Nu* = (3Re)-‘!3, (K >> 1). (11) 

Respectively, 

(Nu*) = ARe-‘:3. (12) 

At T, = const., A = 0.92; at q, = const., A = 1.04 z 
1. Averaging was made from the upper edge of the 
cooling surface where Re = 0, to the given Reynolds 
number of the condensate film. 

The effect of condensate supercooling is taken into 
account via the introduction of the effective con- 
densation heat: 

r* = r(1 + 4K-i). (13) 

In the Nusselt problem 4 = 3/8. The geometry 
slightly influences the numerical coefficient of this 
theory. A solution for the moving vapour is tabulated 
in terms of the similarity criteria: 

_ . Gu”2P”(~o) a 

ci ’ (14) 
0 W’i 

where CX,, is the heat transfer coefficient at CJ” = 0. 

TURBULENT CONDENSATE FLOW WITH 
UNPERTURBED (SMOOTH) INTERPHASE 

The problem of turbulent vapour condensation was 
simultaneously formulated by Kirkbredt [3] on the 
purely empirical basis and by Colborn [4] in terms of 
the Reynolds analogy between heat transfer and 
friction with the application of numerical coefficients 
found for channel flows. Consideration of this problem 
in terms of the classical semi-empirical turbulent 
boundary Prandtl layer theory was first performed by 
the author [5]. But, as with subsequent studies by 
other researchers, proper attention was not given to 
the qualitative difference in the problems of the heat 
transfer in liquid film cooling without phase transi- 
tions and of the film vapour condensation. 

In the former case the heat flux is distributed so that 
on the external film boundary it is equal to zero, 
whereas on the cooling surface its value is maximum. 
Thus the turbulent transfer conditions in a viscous 
sublayer and its immediate vicinity are well defined. 
Hence it is unnecessary to give here detailed transfer 
conditions for the greater part of the flow on the side of 
a free liquid boundary. 

In the latter case the heat flux through a liquid film is 
either practically constant (4K-’ -K 1) or changes 
insignificantly. Therefore, the turbulent transfer mech- 
anisms are essential at all points of the condensate 
film. In this latter case the main integral equation is of 
the form 

Nu; = r/i’” (15) 

Wu*) = ha - uaJ1 Nu; dqb (16) 
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FIG. 1. Changes in the intermittence coefficient y over the 
boundary layer thickness (&*-thickness of mpuision) in the 
iaminar-turbulent boundary layer transition (according to 

the data by Tetyanko) 

0 

FIG. 2. Changes in the intermittence coefficient y over 
boundary layer thickness (&-calculated thickness of 

boundary layer). 

the 
the 

The coefficient E at large Re is equal to the inverse 
value of the turbulent Prandtl number 

pr, = F ; RemRe,, EzPr;l. (17) 
T 

In the region of the laminar-turbulent transition, 
this coefficient can account for the effect of inter- 
mittence, i.e. aiternate transition of laminar and 
turbulent formations (units) through a given cross- 
section of the film. 

Values and character of the change in the inter- 
mittence coefficient in the region of the developed 
turbulent boundary layer of a noncompressible liquid 
on the plate can be determined according to the data 
from Figs. 1 and 2. 

In the general case, 

I; = E(Re; g; Pr; Ar,), (18) 

the main arguments are the Reynolds number and the 
relative distance from the wall. 

For the classical Prandtl two-layer model typical for 
the near-wall region of the turbulent boundary layer, 
we have 

O<y< 11.6v/u~, j_+=O 

1 ’ 
(19) 

y> 11‘6V/V$,, /$ = O.l6p’y2 

for a free vertical flow the wall dynamic velocity is 

u: = (gS&p, (20) 

and the shear stress distribution over the film thickness 
is linear 

7 = z,(l - j)* (21) 

The respective solution at Pr = const. is of the form 

(22) 
Here Pr = E Pr and the film Reynolds number is: 

Re z ~~(3.0 + 2.5 In qa) - 39. (23) 

Data of the calculations according to the above 
formulas are given in Table 1. 

A fairly good agreement with experimental data was 
obtained via the introduction of the deliberately 
decreased critical value of the condensate film Rey- 
nolds number Recr = 100. 

A much more detailed description for the hy 
drodynamics over the total thickness of the fully 
developed turbulent boundary layer is provided by a 
scheme wherein the t~bui~t viscosity is partly approx- 
imated by the equations. 

O<r/<6.8, &=O; 

6.8 < ?) < 6.8 + 0.2(r), - 6.8) = 5.44 + 0.2 ?)a; 
I 

@r = 0.4(n - 6.8) 
,i( ! 

1-L ; 
tld 

5.44 + 0.2 n* < ?J < yi& 
t 

+0.08(~-6.8)& -;I. j (24) 

In this scheme the mixing Iength outside the viscous 
sublayer is measured from its conventional boundary 
q = 6.8 correlating with the Prandtl-Karmann con- 
stant CI = 0.4 [6] and the relationship r) = jj in (21). 

Integrals (15) in these expressions for LT, and ‘E;; cz 
const. are taken in quadratures. The latters are, 
however, cumbersome and the direct numerical calcu- 
lation is more simple. 

Table 1. Local values of Nu$ according to model (19) 

‘la 
N@.__ 

Re Pr=l Y&=1.75 Pr=3 P,=5 

15 103 0.175 0.189 0.198 0.204 
30 307 0.186 0.213 0.232 0.246 
50 590 0.200 0.238 0.266 0.284 
60 157 0.206 0.249 0.280 0.300 

100 1410 0.230 0.280 0.321 0.350 
200 3210 0.266 0.333 0.388 0.430 
300 5140 0.288 0.367 0.430 0.482 

1OKl 20,200 0.381 0.500 0.610 0.690 
4OcO 94,500 0.534 0.723 0.900 1.04 
7000 176,000 0.615 0.842 1.06 1.24 

20,000 555,000 0.827 1.14 1.45 1.71 
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Table 2. Local values of Nu: according to model (24) 

Pr ‘In= 30 50 60 100 200 300 1000 4000 

1 0.160 0.157 0.158 0.164 0.181 0.195 0.255 0.359 
2 0.198 0.209 0.215 0.236 0.275 0.303 0.411 0.588 
3 0.226 0.247 0.257 0.289 0.343 0.382 0.527 0.858 
5 0.265 0.300 0.315 0.361 0.438 0.491 0.690 0.996 
7 0.292 0.336 0.354 0.410 0.501 0.565 0.801 1.155 

10 0.320 0.372 0.393 0.459 0.566 0.640 0.917 1.316 
Re 236 504 652 1280 3020 4900 19,700 94,750 

Table 3. Values of (Nu:) according to model (24) 

Lower 

Pr qn=60 100 200 300 1000 4000 limit 

1 0.157 0.160 0.168 0.176 0.213 0.285 50 ‘I,+= 
2 0.212 0.223 0.245 0.262 0.332 0.452 
3 0.252 0.270 0.300 0.324 0.416 0.572 
5 0.307 0.332 0.377 0.410 0.532 0.735 
7 0.344 0.374 0.428 0.467 0.607 0.841 

10 0.382 0.418 0.479 0.523 0.682 0.948 
Re 652 1280 3020 4900 14,700 94,750 

Table 2 represents the respective data for Pr = 

const. 
As seen, the second model provides a weaker effect of 

the film Reynolds number in the region of its low 
values. By increasing the Reynolds number, calcu- 
lations according to the both models correlate. 

Table 3 represents mean values of the Nusselt 
number in the range from the critical to the given 
Reynolds number. 

Figure 3 illustrates the {(NM*); Pr} dependences 
plotted for five values of the Reynolds number of the 

condensate film. As seen in the region of Pr z 1 this 
dependence becomes rather weak. 

Figure 4 illustrates the plotted dependences of the 
local Nu* values calculated in the laminar and the 
turbulent regions according to the Nusselt formula 
and Table 2, respectively. Figure 5 respresents similar 
plots for the Nusselt number averaged over the 
turbulent flow region and over the total flow with 

0 I I 
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FIG. 3. Dependence of (Nu;) upon Pr and Re according to 
Table 3. 

laminar and turbulent regions according to the simple 
equation : 

(Nu*) = (Nu:) 2 + (NM;) Re ieRe”. (25) 

It is seen that the effect of the laminar region of the 
condensate flow practically degenerates at Re > 5000. 

LAMINAR WAVE CONDENSATE FLOW 

Real flows of liquid films are of the wave character. 
The waves on their surface have different structures 
and they exert different influence on the averaged flow 
and the heat and mass transfer in laminar and 
turbulent flows. 

For a vertical wall a 2-dim. laminar wave liquid film 
flow with a free boundary is described by the model 
Kapitsa-Nakoryakov equation [6-81 

102 2 3 4 5678 3 4 5678104 2 3 4 5678105 

FIG. 4. Dependence of local values of Nu* upon Pr and Re. 
Laminar region-Nusselt data; turbulent region-Table 2. 



Film condensation of pure vapours 651 

L 1 I 

IO? 
, 

2 3 56 /03 2 4 6 104 2 4 6 f05 

FIG. 5. Dependence of (Nu*) upon Pr and Re according to 
(25). Laminar region-Nusselt data, turbulent region- 

Table 2. 

FIG. 6. Two-dimensional steady natural (a, b) and excited (c, 
d) waves of the same frequency. (a, b)-Re = 7.6; (c, d)- 

Re = 22.7. 

here 

Not going into the details of the well known 
solutions of this equation, we will note only that it 

leads to the existence of a so-called “residual layer” 
whose thickness is slightly dependent upon the total 
consumption of the vertical liquid flow. This fact was, 
apparently, revealed by Brauer [9]. 

Profiles of the 2-dim. waves arising spontaneously 
(natural) and specially excited [8] are illustrated in 
Fig. 6. Figure 7 represents the pictures of real 3-dim. 
waves arising on liquid surfaces in film vapour 
condensation. 

The thermal resistance of the condensate between 
the waves is determined by the thickness of the 
“residual layer” 6,, i.e. in the laminar regime in these 

flow regions the heat transfer intensity is of the order 

y2!3 

Nu* z 
U&)’ ‘3 

z const. (28) 

This is the explanation for the Re region where the 
heat transfer is quasi-self-similar in the film conden- 

sation of a pure slowly moving vapour [lo, 111. 
According to the Brauer data for a vertical wall, the 

laminar flow of a film with a smooth surface trans- 
forms into the laminar wave at 

Re,, z 2,3(Ar,)‘15, (29) 

which in turn transforms into a turbulent wave at 

Rer, Z 35(‘4r*)“5. (30) 

F,; ‘- 
,s.., Experiment 

FIG. 7. Three-dimensional waves on a laminar vertical liquid 
film. 

Figure 8 shows experimental heat transfer data in 
film condensation of water vapours on a vertical tube. 
Similar data on freon vapour condensation on hori- 
zontal tubes are represented in Fig. 9. It is distinctly seen 
that derivations from the Nusselt theory are practically 
observed over the total range of Reynolds number and 
in the 0 < Re < 400 range the film condensation heat 
transfer in the laminar wave regime can practically be 

described by equation (12) with modified 
coefficients. 

The available experimental data in the above range 
of Re are in the main described by the formula 

(Nu*) = 0.87 Rem 1.‘4. (31) 

In the general case the proportionality factor and 
the exponent of the Reynolds number of the conden- 
sate film are the functions of the Ar*. 

LAMlNAR WAVE AND TURBULENT WAVE 
CONDENSATE FLOWS 

Figure 10 illustrates the waves arising in a turbulent 
liquid film. They are irregular and, to a first approxi- 
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FIG. 8. Experimental data on water vapour condensation on a 
vertical tube. O-Kutateladze, Pr = 1.75, Re = 24-1260; 
A-Meisenburg et al.. Pr = 1.7, Re = 115~1000; l - 
Zozulya, Pr = 1.75, Re =27490; *-Butuzov, Pr = 1.75, Re 
= 110-435; O-Burov, Pr = 1.75, Re = 50-180; v- 
Ratiani. Pr = 1.75. Re = 2.5-44: Solid line-Nusselt 

calculation 

FIG. 9. Experimental data on freon vapour condensation on a 
vertical tube. O-Kutateladze and Gogonin, Freon-21, Pr z 
3.5, Re = 10-4250; A-Mazukevich, Freon-12, Pr z 3.5, Re 
= 19-100; *--Welt, Freon-12, Pr 5 3.5, Re = 6.8-65; l - 

Zozulya, Freon-lo, Pr = 4.55, Re = 150-650. 

mation, slightly influence the averaged turbulent flow 
characteristics. They can exert a significant effect in the 
presence of diffusional resistance on the interphase, e.g. 
in condensation from vapour-gas mixtures. In conden- 
sation of pure non-metal vapours, this resistance is, 
however, negligible compared with the thermal re- 
sistance of the condensate. 

Figure 11 illustrates the calculated values (Nu*) in 
the presence of the laminar wave regime with the heat 
transfer law (31) in the upper flow region and of the 
turbulent regime calculated according to the model 
(24) in its lower region. 

Figure 12 represents these dependences sectioned 
according to the Reynolds numbers of the condensate 
film. The critical value of the laminar-turbulent tran- 
sition was taken equal to Ret, = 400. According to the 
above data, it follows that slight variations of this value 
do not exert a significant influence on (Nu*). 

At low Pr the heat transfer quasi-self-similarity is 
distinctly observed in a rather large range of the 
supercritical Re. 

A comparison of the calculations from the plots in 
Fig. 12 and experiments with water and Freon-21 
vapour condensation (Pr = 1.0-1.7 and 3.5, re- 
spectively) is given in Fig. 13. As seen, the data agree 
well both qualitatively and quantitatively with calcu- 

lations at Pr z 1 for water vapour and at Pr 2 2.5 for 
Freon-21, i.e. at c z 0.6-0.7. Therefore, it can be said 
that the suggested model for the film condensation 
heat transfer describes qualitatively well a real process 
and the quantitative agreement is sufficiently readily 

r 

Re = lab 
0.1 set h, q 0.8 mm 

0.1 set 
Re = 870 

I h,= 0.7mm 

FIG. 10. Photographs of waves on a free vertical turbulent liquid film. 
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6 

4 

FIG. 11. Dependence of (Nu*) according to (25). Laminar wave region according to (31), turbulent region 
according to Table 2. 

FIG. 12. Sectioned dependence of Fig. 11 according to Reynolds numbers. 

L I - 

I- 
f0 2 345 7 f02 2 345 7 fD3 2 345 7Pe 

FOG. 13. Comparison of calculations according to the plots in Figs. 11, 12 with experiment for the 
condensation of water and Freon-21 vapours. E % 0.6-0.7. 

10 3 2 3 95 Re TO4 2 

FIG. 14. Diphenyl condensation, Pr x 5.2. l-Calculation at E = 1; 2---calculation at E = 0.7. 
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realized via the introduction of the E coefficient, the 
function (18) being sufficiently weak. 

Unfortunately, the literature lacks good experimen- 
tal data at high Pr of the condensate. A comparison of 
the suggested calculation with rather obsolete experi- 
ments on diphenyl condensation [13] carried out with 
significant methodological defects is given in Fig. 14. 
Nevertheless, a definite agreement between theory and 
experiment is observed here as well. 

The considered models are generalized for the 
condensation of vapour moving parallel to the wall via 
the introduction of the total V; value (i.e. with taking 
into account the effect of the gravity force and vapour 
friction on the interphase). 
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THBORIE SEMI-EMPIRIQUE DE LA CONDENSATION EN FILM DE LA VAPEUR PURE 

R&anm-On considere les modtles les plus simples de la condensation en film de la vapeur non mttallique 
pure et leur correction resultant de I’analyse des resultats d’experience disponsibles. 

HALBEMPIRISCHE THEORIE DER FILMKONDENSATION DES REINDAMPFES 

Zusammenfassung-Es werden betrachtet die einfachsten mathematischen Modelle der Filmkondensation 
des reinen Nichtmetalldampfes und ihre Korrektion, die aus der Analyse der vorhandenen 

Versuchsergebnisse hervorgeht. 

HOJIY3MIIWPM4ECKAfl TEOPMX IIJ-IEHOsHOR KOHflEHCA4MW WICTOI-0 HAPA 

AHHOTauHn - PacwaTpeeamTcn npocTetimee MaTeMaTwiecwie MOnenti nncHOYHOti KOHfleHCauNB 
~UCTO~O HeMeTannwecKoro napa H HX KoppeKwpoeKa, cnenyrouraa u3 asanasa ubiemuuixca sKcnepa- 

MeHTanbHbIX naHHb1X. 


